Paper Reading AI Learner

A Domain Generalization Approach for Out-Of-Distribution 12-lead ECG Classification with Convolutional Neural Networks

2022-08-20 10:58:31
Aristotelis Ballas, Christos Diou

Abstract

Deep Learning systems have achieved great success in the past few years, even surpassing human intelligence in several cases. As of late, they have also established themselves in the biomedical and healthcare domains, where they have shown a lot of promise, but have not yet achieved widespread adoption. This is in part due to the fact that most methods fail to maintain their performance when they are called to make decisions on data that originate from a different distribution than the one they were trained on, namely Out-Of-Distribution (OOD) data. For example, in the case of biosignal classification, models often fail to generalize well on datasets from different hospitals, due to the distribution discrepancy amongst different sources of data. Our goal is to demonstrate the Domain Generalization problem present between distinct hospital databases and propose a method that classifies abnormalities on 12-lead Electrocardiograms (ECGs), by leveraging information extracted across the architecture of a Deep Neural Network, and capturing the underlying structure of the signal. To this end, we adopt a ResNet-18 as the backbone model and extract features from several intermediate convolutional layers of the network. To evaluate our method, we adopt publicly available ECG datasets from four sources and handle them as separate domains. To simulate the distributional shift present in real-world settings, we train our model on a subset of the domains and leave-out the remaining ones. We then evaluate our model both on the data present at training time (intra-distribution) and the held-out data (out-of-distribution), achieving promising results and surpassing the baseline of a vanilla Residual Network in most of the cases.

Abstract (translated)

URL

https://arxiv.org/abs/2208.09656

PDF

https://arxiv.org/pdf/2208.09656.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot