Paper Reading AI Learner

Learning User Preferences via Reinforcement Learning with Spatial Interface Valuing

2019-02-02 13:45:20
Miguel Alonso Jr

Abstract

Interactive Machine Learning is concerned with creating systems that operate in environments alongside humans to achieve a task. A typical use is to extend or amplify the capabilities of a human in cognitive or physical ways, requiring the machine to adapt to the users' intentions and preferences. Often, this takes the form of a human operator providing some type of feedback to the user, which can be explicit feedback, implicit feedback, or a combination of both. Explicit feedback, such as through a mouse click, carries a high cognitive load. The focus of this study is to extend the current state of the art in interactive machine learning by demonstrating that agents can learn a human user's behavior and adapt to preferences with a reduced amount of explicit human feedback in a mixed feedback setting. The learning agent perceives a value of its own behavior from hand gestures given via a spatial interface. This feedback mechanism is termed Spatial Interface Valuing. This method is evaluated experimentally in a simulated environment for a grasping task using a robotic arm with variable grip settings. Preliminary results indicate that learning agents using spatial interface valuing can learn a value function mapping spatial gestures to expected future rewards much more quickly as compared to those same agents just receiving explicit feedback, demonstrating that an agent perceiving feedback from a human user via a spatial interface can serve as an effective complement to existing approaches.

Abstract (translated)

URL

https://arxiv.org/abs/1902.00719

PDF

https://arxiv.org/pdf/1902.00719.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot