Paper Reading AI Learner

Semantic scene descriptions as an objective of human vision

2022-09-23 17:34:33
Adrien Doerig, Tim C Kietzmann, Emily Allen, Yihan Wu, Thomas Naselaris, Kendrick Kay, Ian Charest

Abstract

Interpreting the meaning of a visual scene requires not only identification of its constituent objects, but also a rich semantic characterization of object interrelations. Here, we study the neural mechanisms underlying visuo-semantic transformations by applying modern computational techniques to a large-scale 7T fMRI dataset of human brain responses elicited by complex natural scenes. Using semantic embeddings obtained by applying linguistic deep learning models to human-generated scene descriptions, we identify a widely distributed network of brain regions that encode semantic scene descriptions. Importantly, these semantic embeddings better explain activity in these regions than traditional object category labels. In addition, they are effective predictors of activity despite the fact that the participants did not actively engage in a semantic task, suggesting that visuo-semantic transformations are a default mode of vision. In support of this view, we then show that highly accurate reconstructions of scene captions can be directly linearly decoded from patterns of brain activity. Finally, a recurrent convolutional neural network trained on semantic embeddings further outperforms semantic embeddings in predicting brain activity, providing a mechanistic model of the brain's visuo-semantic transformations. Together, these experimental and computational results suggest that transforming visual input into rich semantic scene descriptions may be a central objective of the visual system, and that focusing efforts on this new objective may lead to improved models of visual information processing in the human brain.

Abstract (translated)

URL

https://arxiv.org/abs/2209.11737

PDF

https://arxiv.org/pdf/2209.11737.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot