Paper Reading AI Learner

Scene Text Image Super-Resolution via Content Perceptual Loss and Criss-Cross Transformer Blocks

2022-10-13 11:48:45
Rui Qin, Bin Wang, Yu-Wing Tai

Abstract

Text image super-resolution is a unique and important task to enhance readability of text images to humans. It is widely used as pre-processing in scene text recognition. However, due to the complex degradation in natural scenes, recovering high-resolution texts from the low-resolution inputs is ambiguous and challenging. Existing methods mainly leverage deep neural networks trained with pixel-wise losses designed for natural image reconstruction, which ignore the unique character characteristics of texts. A few works proposed content-based losses. However, they only focus on text recognizers' accuracy, while the reconstructed images may still be ambiguous to humans. Further, they often have weak generalizability to handle cross languages. To this end, we present TATSR, a Text-Aware Text Super-Resolution framework, which effectively learns the unique text characteristics using Criss-Cross Transformer Blocks (CCTBs) and a novel Content Perceptual (CP) Loss. The CCTB extracts vertical and horizontal content information from text images by two orthogonal transformers, respectively. The CP Loss supervises the text reconstruction with content semantics by multi-scale text recognition features, which effectively incorporates content awareness into the framework. Extensive experiments on various language datasets demonstrate that TATSR outperforms state-of-the-art methods in terms of both recognition accuracy and human perception.

Abstract (translated)

URL

https://arxiv.org/abs/2210.06924

PDF

https://arxiv.org/pdf/2210.06924.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot