Paper Reading AI Learner

DE-FAKE: Detection and Attribution of Fake Images Generated by Text-to-Image Diffusion Models

2022-10-13 13:08:54
Zeyang Sha, Zheng Li, Ning Yu, Yang Zhang

Abstract

Diffusion models emerge to establish the new state of the art in the visual generation. In particular, text-to-image diffusion models that generate images based on caption descriptions have attracted increasing attention, impressed by their user controllability. Despite encouraging performance, they exaggerate concerns of fake image misuse and cast new pressures on fake image detection. In this work, we pioneer a systematic study of the authenticity of fake images generated by text-to-image diffusion models. In particular, we conduct comprehensive studies from two perspectives unique to the text-to-image model, namely, visual modality and linguistic modality. For visual modality, we propose universal detection that demonstrates fake images of these text-to-image diffusion models share common cues, which enable us to distinguish them apart from real images. We then propose source attribution that reveals the uniqueness of the fingerprints held by each diffusion model, which can be used to attribute each fake image to its model source. A variety of ablation and analysis studies further interpret the improvements from each of our proposed methods. For linguistic modality, we delve deeper to comprehensively analyze the impacts of text captions (called prompt analysis) on the image authenticity of text-to-image diffusion models, and reason the impacts to the detection and attribution performance of fake images. All findings contribute to the community's insight into the natural properties of text-to-image diffusion models, and we appeal to our community's consideration on the counterpart solutions, like ours, against the rapidly-evolving fake image generators.

Abstract (translated)

URL

https://arxiv.org/abs/2210.06998

PDF

https://arxiv.org/pdf/2210.06998.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot