Paper Reading AI Learner

SAICL: Student Modelling with Interaction-level Auxiliary Contrastive Tasks for Knowledge Tracing and Dropout Prediction

2022-10-07 14:17:22
Jungbae Park, Jinyoung Kim, Soonwoo Kwan, Sang Wan Lee

Abstract

Knowledge tracing and dropout prediction are crucial for online education to estimate students' knowledge states or to prevent dropout rates. While traditional systems interacting with students suffered from data sparsity and overfitting, recent sample-level contrastive learning helps to alleviate this issue. One major limitation of sample-level approaches is that they regard students' behavior interaction sequences as a bundle, so they often fail to encode temporal contexts and track their dynamic changes, making it hard to find optimal representations for knowledge tracing and dropout prediction. To apply temporal context within the sequence, this study introduces a novel student modeling framework, SAICL: \textbf{s}tudent modeling with \textbf{a}uxiliary \textbf{i}nteraction-level \textbf{c}ontrastive \textbf{l}earning. In detail, SAICL can utilize both proposed self-supervised/supervised interaction-level contrastive objectives: MilCPC (\textbf{M}ulti-\textbf{I}nteraction-\textbf{L}evel \textbf{C}ontrastive \textbf{P}redictive \textbf{C}oding) and SupCPC (\textbf{Sup}ervised \textbf{C}ontrastive \textbf{P}redictive \textbf{C}oding). While previous sample-level contrastive methods for student modeling are highly dependent on data augmentation methods, the SAICL is free of data augmentation while showing better performance in both self-supervised and supervised settings. By combining cross-entropy with contrastive objectives, the proposed SAICL achieved comparable knowledge tracing and dropout prediction performance with other state-of-art models without compromising inference costs.

Abstract (translated)

URL

https://arxiv.org/abs/2210.09012

PDF

https://arxiv.org/pdf/2210.09012.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot