Paper Reading AI Learner

Learning Self-Regularized Adversarial Views for Self-Supervised Vision Transformers

2022-10-16 06:20:44
Tao Tang, Changlin Li, Guangrun Wang, Kaicheng Yu, Xiaojun Chang, Xiaodan Liang

Abstract

Automatic data augmentation (AutoAugment) strategies are indispensable in supervised data-efficient training protocols of vision transformers, and have led to state-of-the-art results in supervised learning. Despite the success, its development and application on self-supervised vision transformers have been hindered by several barriers, including the high search cost, the lack of supervision, and the unsuitable search space. In this work, we propose AutoView, a self-regularized adversarial AutoAugment method, to learn views for self-supervised vision transformers, by addressing the above barriers. First, we reduce the search cost of AutoView to nearly zero by learning views and network parameters simultaneously in a single forward-backward step, minimizing and maximizing the mutual information among different augmented views, respectively. Then, to avoid information collapse caused by the lack of label supervision, we propose a self-regularized loss term to guarantee the information propagation. Additionally, we present a curated augmentation policy search space for self-supervised learning, by modifying the generally used search space designed for supervised learning. On ImageNet, our AutoView achieves remarkable improvement over RandAug baseline (+10.2% k-NN accuracy), and consistently outperforms sota manually tuned view policy by a clear margin (up to +1.3% k-NN accuracy). Extensive experiments show that AutoView pretraining also benefits downstream tasks (+1.2% mAcc on ADE20K Semantic Segmentation and +2.8% mAP on revisited Oxford Image Retrieval benchmark) and improves model robustness (+2.3% Top-1 Acc on ImageNet-A and +1.0% AUPR on ImageNet-O). Code and models will be available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2210.08458

PDF

https://arxiv.org/pdf/2210.08458.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot