Paper Reading AI Learner

Free energy model of emotional valence in dual-process perceptions

2022-10-19 02:52:13
Hideyoshi Yanagisawa, Xiaoxiang Wu, Kazutaka Ueda, Takeo Kato

Abstract

An appropriate level of arousal induces positive emotions, and a high arousal potential may provoke negative emotions. To explain the effect of arousal on emotional valence, we propose a novel mathematical framework of arousal potential variations in the dual process of human cognition: automatic and controlled process. Although models have been proposed to explain the emotions in the dual process, a suitable mathematical formulation is largely undiscovered. Our model associates free energy with arousal potential and its variations to explain emotional valence. Decreasing and increasing free energy consequently induces positive and negative emotions, respectively. We formalize a transition from the automatic to controlled process in the dual process as a change of Bayesian prior. We model emotion valence using free-energy increase (FI) when one tries to change one's Bayesian prior and its reduction (FR) when one succeeds to recognize the same stimuli with a changed prior and define three emotions: "interest," "confusion," and "boredom" using the variations. The mathematical analysis comparing between varied Gaussian model parameters suggests that: 1) prediction error (PR) increases FR when the first prior variance is greater than the second prior variance, 2) PR always increases FR, and 3) the distance between priors' means always increases FR. We discuss the association of the outcomes with emotions in the controlled process. The mathematical model provides a general framework for predicting and controlling emotional valence in the dual process that varies with viewpoint and stimuli, as well as for understanding the contradictions in the effects of arousal on the valence.

Abstract (translated)

URL

https://arxiv.org/abs/2210.10262

PDF

https://arxiv.org/pdf/2210.10262.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot