Paper Reading AI Learner

Enhancing Label Consistency on Document-level Named Entity Recognition

2022-10-24 04:45:17
Minbyul Jeong, Jaewoo Kang

Abstract

Named entity recognition (NER) is a fundamental part of extracting information from documents in biomedical applications. A notable advantage of NER is its consistency in extracting biomedical entities in a document context. Although existing document NER models show consistent predictions, they still do not meet our expectations. We investigated whether the adjectives and prepositions within an entity cause a low label consistency, which results in inconsistent predictions. In this paper, we present our method, ConNER, which enhances the label dependency of modifiers (e.g., adjectives and prepositions) to achieve higher label agreement. ConNER refines the draft labels of the modifiers to improve the output representations of biomedical entities. The effectiveness of our method is demonstrated on four popular biomedical NER datasets; in particular, its efficacy is proved on two datasets with 7.5-8.6% absolute improvements in the F1 score. We interpret that our ConNER method is effective on datasets that have intrinsically low label consistency. In the qualitative analysis, we demonstrate how our approach makes the NER model generate consistent predictions. Our code and resources are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2210.12949

PDF

https://arxiv.org/pdf/2210.12949.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot