Paper Reading AI Learner

Multi-Granularity Cross-Modality Representation Learning for Named Entity Recognition on Social Media

2022-10-19 15:14:55
Peipei Liu, Gaosheng Wang, Hong Li, Jie Liu, Yimo Ren, Hongsong Zhu, Limin Sun

Abstract

Named Entity Recognition (NER) on social media refers to discovering and classifying entities from unstructured free-form content, and it plays an important role for various applications such as intention understanding and user recommendation. With social media posts tending to be multimodal, Multimodal Named Entity Recognition (MNER) for the text with its accompanying image is attracting more and more attention since some textual components can only be understood in combination with visual information. However, there are two drawbacks in existing approaches: 1) Meanings of the text and its accompanying image do not match always, so the text information still plays a major role. However, social media posts are usually shorter and more informal compared with other normal contents, which easily causes incomplete semantic description and the data sparsity problem. 2) Although the visual representations of whole images or objects are already used, existing methods ignore either fine-grained semantic correspondence between objects in images and words in text or the objective fact that there are misleading objects or no objects in some images. In this work, we solve the above two problems by introducing the multi-granularity cross-modality representation learning. To resolve the first problem, we enhance the representation by semantic augmentation for each word in text. As for the second issue, we perform the cross-modality semantic interaction between text and vision at the different vision granularity to get the most effective multimodal guidance representation for every word. Experiments show that our proposed approach can achieve the SOTA or approximate SOTA performance on two benchmark datasets of tweets. The code, data and the best performing models are available at this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2210.14163

PDF

https://arxiv.org/pdf/2210.14163.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot