Paper Reading AI Learner

MALUNet: A Multi-Attention and Light-weight UNet for Skin Lesion Segmentation

2022-11-03 13:19:22
Jiacheng Ruan, Suncheng Xiang, Mingye Xie, Ting Liu, Yuzhuo Fu

Abstract

Recently, some pioneering works have preferred applying more complex modules to improve segmentation performances. However, it is not friendly for actual clinical environments due to limited computing resources. To address this challenge, we propose a light-weight model to achieve competitive performances for skin lesion segmentation at the lowest cost of parameters and computational complexity so far. Briefly, we propose four modules: (1) DGA consists of dilated convolution and gated attention mechanisms to extract global and local feature information; (2) IEA, which is based on external attention to characterize the overall datasets and enhance the connection between samples; (3) CAB is composed of 1D convolution and fully connected layers to perform a global and local fusion of multi-stage features to generate attention maps at channel axis; (4) SAB, which operates on multi-stage features by a shared 2D convolution to generate attention maps at spatial axis. We combine four modules with our U-shape architecture and obtain a light-weight medical image segmentation model dubbed as MALUNet. Compared with UNet, our model improves the mIoU and DSC metrics by 2.39% and 1.49%, respectively, with a 44x and 166x reduction in the number of parameters and computational complexity. In addition, we conduct comparison experiments on two skin lesion segmentation datasets (ISIC2017 and ISIC2018). Experimental results show that our model achieves state-of-the-art in balancing the number of parameters, computational complexity and segmentation performances. Code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2211.01784

PDF

https://arxiv.org/pdf/2211.01784.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot