Paper Reading AI Learner

Evaluating Distribution System Reliability with Hyperstructures Graph Convolutional Nets

2022-11-14 01:29:09
Yuzhou Chen, Tian Jiang, Miguel Heleno, Alexandre Moreira, Yulia R. Gel

Abstract

Nowadays, it is broadly recognized in the power system community that to meet the ever expanding energy sector's needs, it is no longer possible to rely solely on physics-based models and that reliable, timely and sustainable operation of energy systems is impossible without systematic integration of artificial intelligence (AI) tools. Nevertheless, the adoption of AI in power systems is still limited, while integration of AI particularly into distribution grid investment planning is still an uncharted territory. We make the first step forward to bridge this gap by showing how graph convolutional networks coupled with the hyperstructures representation learning framework can be employed for accurate, reliable, and computationally efficient distribution grid planning with resilience objectives. We further propose a Hyperstructures Graph Convolutional Neural Networks (Hyper-GCNNs) to capture hidden higher order representations of distribution networks with attention mechanism. Our numerical experiments show that the proposed Hyper-GCNNs approach yields substantial gains in computational efficiency compared to the prevailing methodology in distribution grid planning and also noticeably outperforms seven state-of-the-art models from deep learning (DL) community.

Abstract (translated)

URL

https://arxiv.org/abs/2211.07645

PDF

https://arxiv.org/pdf/2211.07645.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot