Paper Reading AI Learner

PatchGT: Transformer over Non-trainable Clusters for Learning Graph Representations

2022-11-26 01:17:23
Han Gao, Xu Han, Jiaoyang Huang, Jian-Xun Wang, Li-Ping Liu

Abstract

Recently the Transformer structure has shown good performances in graph learning tasks. However, these Transformer models directly work on graph nodes and may have difficulties learning high-level information. Inspired by the vision transformer, which applies to image patches, we propose a new Transformer-based graph neural network: Patch Graph Transformer (PatchGT). Unlike previous transformer-based models for learning graph representations, PatchGT learns from non-trainable graph patches, not from nodes directly. It can help save computation and improve the model performance. The key idea is to segment a graph into patches based on spectral clustering without any trainable parameters, with which the model can first use GNN layers to learn patch-level representations and then use Transformer to obtain graph-level representations. The architecture leverages the spectral information of graphs and combines the strengths of GNNs and Transformers. Further, we show the limitations of previous hierarchical trainable clusters theoretically and empirically. We also prove the proposed non-trainable spectral clustering method is permutation invariant and can help address the information bottlenecks in the graph. PatchGT achieves higher expressiveness than 1-WL-type GNNs, and the empirical study shows that PatchGT achieves competitive performances on benchmark datasets and provides interpretability to its predictions. The implementation of our algorithm is released at our Github repo: this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2211.14425

PDF

https://arxiv.org/pdf/2211.14425.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot