Paper Reading AI Learner

Understanding the Energy Consumption of HPC Scale Artificial Intelligence

2022-11-14 08:51:17
Danilo Carastan dos Santos (DATAMOVE, UGA)

Abstract

This paper contributes towards better understanding the energy consumption trade-offs of HPC scale Artificial Intelligence (AI), and more specifically Deep Learning (DL) algorithms. For this task we developed benchmark-tracker, a benchmark tool to evaluate the speed and energy consumption of DL algorithms in HPC environments. We exploited hardware counters and Python libraries to collect energy information through software, which enabled us to instrument a known AI benchmark tool, and to evaluate the energy consumption of numerous DL algorithms and models. Through an experimental campaign, we show a case example of the potential of benchmark-tracker to measure the computing speed and the energy consumption for training and inference DL algorithms, and also the potential of Benchmark-Tracker to help better understanding the energy behavior of DL algorithms in HPC platforms. This work is a step forward to better understand the energy consumption of Deep Learning in HPC, and it also contributes with a new tool to help HPC DL developers to better balance the HPC infrastructure in terms of speed and energy consumption.

Abstract (translated)

URL

https://arxiv.org/abs/2212.00582

PDF

https://arxiv.org/pdf/2212.00582.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot