Paper Reading AI Learner

Mean-Field Control based Approximation of Multi-Agent Reinforcement Learning in Presence of a Non-decomposable Shared Global State

2023-01-13 18:55:58
Washim Uddin Mondal, Vaneet Aggarwal, Satish V. Ukkusuri

Abstract

Mean Field Control (MFC) is a powerful approximation tool to solve large-scale Multi-Agent Reinforcement Learning (MARL) problems. However, the success of MFC relies on the presumption that given the local states and actions of all the agents, the next (local) states of the agents evolve conditionally independent of each other. Here we demonstrate that even in a MARL setting where agents share a common global state in addition to their local states evolving conditionally independently (thus introducing a correlation between the state transition processes of individual agents), the MFC can still be applied as a good approximation tool. The global state is assumed to be non-decomposable i.e., it cannot be expressed as a collection of local states of the agents. We compute the approximation error as $\mathcal{O}(e)$ where $e=\frac{1}{\sqrt{N}}\left[\sqrt{|\mathcal{X}|} +\sqrt{|\mathcal{U}|}\right]$. The size of the agent population is denoted by the term $N$, and $|\mathcal{X}|, |\mathcal{U}|$ respectively indicate the sizes of (local) state and action spaces of individual agents. The approximation error is found to be independent of the size of the shared global state space. We further demonstrate that in a special case if the reward and state transition functions are independent of the action distribution of the population, then the error can be improved to $e=\frac{\sqrt{|\mathcal{X}|}}{\sqrt{N}}$. Finally, we devise a Natural Policy Gradient based algorithm that solves the MFC problem with $\mathcal{O}(\epsilon^{-3})$ sample complexity and obtains a policy that is within $\mathcal{O}(\max\{e,\epsilon\})$ error of the optimal MARL policy for any $\epsilon>0$.

Abstract (translated)

URL

https://arxiv.org/abs/2301.06889

PDF

https://arxiv.org/pdf/2301.06889.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot