Paper Reading AI Learner

Surgical Aggregation: A Federated Learning Framework for Harmonizing Distributed Datasets with Diverse Tasks

2023-01-17 03:53:29
Pranav Kulkarni, Adway Kanhere, Paul H. Yi, Vishwa S. Parekh

Abstract

AI-assisted characterization of chest x-rays (CXR) has the potential to provide substantial benefits across many clinical applications. Many large-scale public CXR datasets have been curated for detection of abnormalities using deep learning. However, each of these datasets focus on detecting a subset of disease labels that could be present in a CXR, thus limiting their clinical utility. Furthermore, the distributed nature of these datasets, along with data sharing regulations, make it difficult to share and create a complete representation of disease labels. We propose surgical aggregation, a federated learning framework for aggregating knowledge from distributed datasets with different disease labels into a 'global' deep learning model. We randomly divided the NIH Chest X-Ray 14 dataset into training (70%), validation (10%), and test (20%) splits with no patient overlap and conducted two experiments. In the first experiment, we pruned the disease labels to create two 'toy' datasets containing 11 and 8 labels respectively with 4 overlapping labels. For the second experiment, we pruned the disease labels to create two disjoint 'toy' datasets with 7 labels each. We observed that the surgically aggregated 'global' model resulted in excellent performance across both experiments when compared to a 'baseline' model trained on complete disease labels. The overlapping and disjoint experiments had an AUROC of 0.87 and 0.86 respectively, compared to the baseline AUROC of 0.87. We used surgical aggregation to harmonize the NIH Chest X-Ray 14 and CheXpert datasets into a 'global' model with an AUROC of 0.85 and 0.83 respectively. Our results show that surgical aggregation could be used to develop clinically useful deep learning models by aggregating knowledge from distributed datasets with diverse tasks, a step forward towards bridging the gap from bench to bedside.

Abstract (translated)

URL

https://arxiv.org/abs/2301.06683

PDF

https://arxiv.org/pdf/2301.06683.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot