Paper Reading AI Learner

TransMatting: Tri-token Equipped Transformer Model for Image Matting

2023-03-11 18:21:25
Huanqia Cai, Fanglei Xue, Lele Xu, Lili Guo

Abstract

Image matting aims to predict alpha values of elaborate uncertainty areas of natural images, like hairs, smoke, and spider web. However, existing methods perform poorly when faced with highly transparent foreground objects due to the large area of uncertainty to predict and the small receptive field of convolutional networks. To address this issue, we propose a Transformer-based network (TransMatting) to model transparent objects with long-range features and collect a high-resolution matting dataset of transparent objects (Transparent-460) for performance evaluation. Specifically, to utilize semantic information in the trimap flexibly and effectively, we also redesign the trimap as three learnable tokens, named tri-token. Both Transformer and convolution matting models could benefit from our proposed tri-token design. By replacing the traditional trimap concatenation strategy with our tri-token, existing matting methods could achieve about 10% improvement in SAD and 20% in MSE. Equipped with the new tri-token design, our proposed TransMatting outperforms current state-of-the-art methods on several popular matting benchmarks and our newly collected Transparent-460.

Abstract (translated)

图像剪辑的目标是预测自然图像中复杂的不确定性区域,如毛发、烟雾和蜘蛛网等的Alpha值。然而,现有的方法在面对高度透明的前景对象时表现很差,因为预测的不确定性区域很大,而卷积神经网络的响应范围很小。为了解决这一问题,我们提出了一种基于Transformer的网络(TransMatting),以建模具有远程特征的透明对象,并收集了高分辨率的透明对象剪辑数据集(Transparent-460)进行性能评估。具体来说,为了有效地和 flexibly 利用 trimap 中的语义信息,我们还重新设计了 trimap 为三个可学习的标志符,并命名为 tri-token。Transformer 和卷积剪辑模型都可以从我们的 tri-token 设计中获得好处。通过将传统的 trimap concatenation 策略与我们的 tri-token 设计替换,现有的剪辑方法可以实现约 10% 的改进 in SAD 和 20% 的改进 in MSE。借助于新的 tri-token 设计,我们提出的 TransMatting 在多个流行的剪辑基准测试和我们新收集的 Transparent-460 中表现优于当前的前沿技术方法。

URL

https://arxiv.org/abs/2303.06476

PDF

https://arxiv.org/pdf/2303.06476.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot