Paper Reading AI Learner

SparseSat-NeRF: Dense Depth Supervised Neural Radiance Fields for Sparse Satellite Images

2023-09-01 06:21:02
Lulin Zhang, Ewelina Rupnik

Abstract

Digital surface model generation using traditional multi-view stereo matching (MVS) performs poorly over non-Lambertian surfaces, with asynchronous acquisitions, or at discontinuities. Neural radiance fields (NeRF) offer a new paradigm for reconstructing surface geometries using continuous volumetric representation. NeRF is self-supervised, does not require ground truth geometry for training, and provides an elegant way to include in its representation physical parameters about the scene, thus potentially remedying the challenging scenarios where MVS fails. However, NeRF and its variants require many views to produce convincing scene's geometries which in earth observation satellite imaging is rare. In this paper we present SparseSat-NeRF (SpS-NeRF) - an extension of Sat-NeRF adapted to sparse satellite views. SpS-NeRF employs dense depth supervision guided by crosscorrelation similarity metric provided by traditional semi-global MVS matching. We demonstrate the effectiveness of our approach on stereo and tri-stereo Pleiades 1B/WorldView-3 images, and compare against NeRF and Sat-NeRF. The code is available at this https URL

Abstract (translated)

使用传统的多视图三角测量(MVS)方法生成数字表面模型在非Lambertian表面、 asynchronous acquisition 或中断处表现不佳。神经光辐射场(NeRF)提供了使用连续体积表示重构表面几何学的新范式。 NeRF是自我监督的,不需要 ground truth 几何学进行训练,并提供了一种优雅的方式,将其表示的物理参数包括在它的表示中,从而可能修复在 MVS 失败时的 challenging 场景。然而, NeRF 及其变体需要许多视图才能产生有说服力的场景几何学,这在地球观测卫星图像中是非常罕见的。在本文中,我们介绍了稀疏卫星-NeRF(SpS-NeRF) - Sat-NeRF 的扩展,以适应稀疏卫星视图。 SpS-NeRF采用Dense depth supervision,受传统半全局MVS匹配提供的交叉相关相似度度量的指导。我们证明了我们的方法在三角和三角多视图 Pleiades 1B/WorldView-3 图像中的 effectiveness,并对比了 NeRF 和Sat-NeRF。代码在此https URL 可用。

URL

https://arxiv.org/abs/2309.00277

PDF

https://arxiv.org/pdf/2309.00277.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot