Paper Reading AI Learner

Situational Object Boundary Detection

2015-04-24 09:15:33
Jasper Uijlings, Vittorio Ferrari

Abstract

Intuitively, the appearance of true object boundaries varies from image to image. Hence the usual monolithic approach of training a single boundary predictor and applying it to all images regardless of their content is bound to be suboptimal. In this paper we therefore propose situational object boundary detection: We first define a variety of situations and train a specialized object boundary detector for each of them using [Dollar and Zitnick 2013]. Then given a test image, we classify it into these situations using its context, which we model by global image appearance. We apply the corresponding situational object boundary detectors, and fuse them based on the classification probabilities. In experiments on ImageNet, Microsoft COCO, and Pascal VOC 2012 segmentation we show that our situational object boundary detection gives significant improvements over a monolithic approach. Additionally, our method substantially outperforms [Hariharan et al. 2011] on semantic contour detection on their SBD dataset.

Abstract (translated)

URL

https://arxiv.org/abs/1504.06434

PDF

https://arxiv.org/pdf/1504.06434.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot