Paper Reading AI Learner

Mitigating Challenges of the Space Environment for Onboard Artificial Intelligence: Design Overview of the Imaging Payload on SpIRIT

2024-04-12 11:08:26
Miguel Ortiz del Castillo, Jonathan Morgan, Jack McRobbie, Clint Therakam, Zaher Joukhadar, Robert Mearns, Simon Barraclough, Richard Sinnott, Andrew Woods, Chris Bayliss, Kris Ehinger, Ben Rubinstein, James Bailey, Airlie Chapman, Michele Trenti

Abstract

Artificial intelligence (AI) and autonomous edge computing in space are emerging areas of interest to augment capabilities of nanosatellites, where modern sensors generate orders of magnitude more data than can typically be transmitted to mission control. Here, we present the hardware and software design of an onboard AI subsystem hosted on SpIRIT. The system is optimised for on-board computer vision experiments based on visible light and long wave infrared cameras. This paper highlights the key design choices made to maximise the robustness of the system in harsh space conditions, and their motivation relative to key mission requirements, such as limited compute resources, resilience to cosmic radiation, extreme temperature variations, distribution shifts, and very low transmission bandwidths. The payload, called Loris, consists of six visible light cameras, three infrared cameras, a camera control board and a Graphics Processing Unit (GPU) system-on-module. Loris enables the execution of AI models with on-orbit fine-tuning as well as a next-generation image compression algorithm, including progressive coding. This innovative approach not only enhances the data processing capabilities of nanosatellites but also lays the groundwork for broader applications to remote sensing from space.

Abstract (translated)

人工智能(AI)和自主边缘计算在空间是一个正在兴起的兴趣领域,可以增强纳米卫星的性能,其中现代传感器产生的数据比通常发送到地面站的数据要大得多。在这里,我们介绍了在SpIRIT上托管的载有人工智能子系统的硬件和软件设计。该系统针对可见光和长波红外相机进行优化,以进行在轨计算机视觉实验。本文重点介绍了系统在恶劣空间条件下的关键设计选择以及这些选择与关键任务需求(如有限计算资源、宇宙辐射耐受性、极端温度变化、分布偏移和非常低传输带宽)之间的联系。载荷称为Loris,包括六个可见光相机、三个红外相机、一个相机控制板和GPU系统级模块。Loris不仅提高了纳米卫星的数据处理能力,还为从空间遥感的更广泛应用奠定了基础。

URL

https://arxiv.org/abs/2404.08399

PDF

https://arxiv.org/pdf/2404.08399.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot