Paper Reading AI Learner

Sum of Group Error Differences: A Critical Examination of Bias Evaluation in Biometric Verification and a Dual-Metric Measure

2024-04-23 10:59:44
Alaa Elobaid, Nathan Ramoly, Lara Younes, Symeon Papadopoulos, Eirini Ntoutsi, Ioannis Kompatsiaris

Abstract

Biometric Verification (BV) systems often exhibit accuracy disparities across different demographic groups, leading to biases in BV applications. Assessing and quantifying these biases is essential for ensuring the fairness of BV systems. However, existing bias evaluation metrics in BV have limitations, such as focusing exclusively on match or non-match error rates, overlooking bias on demographic groups with performance levels falling between the best and worst performance levels, and neglecting the magnitude of the bias present. This paper presents an in-depth analysis of the limitations of current bias evaluation metrics in BV and, through experimental analysis, demonstrates their contextual suitability, merits, and limitations. Additionally, it introduces a novel general-purpose bias evaluation measure for BV, the ``Sum of Group Error Differences (SEDG)''. Our experimental results on controlled synthetic datasets demonstrate the effectiveness of demographic bias quantification when using existing metrics and our own proposed measure. We discuss the applicability of the bias evaluation metrics in a set of simulated demographic bias scenarios and provide scenario-based metric recommendations. Our code is publicly available under \url{this https URL}.

Abstract (translated)

生物特征验证(BV)系统通常在不同的 demographic群体之间表现出不一致的准确性,导致 BV 应用中的偏见。评估和量化这些偏见对于确保 BV 系统的公正性至关重要。然而,现有的 BV 偏见评估指标存在局限性,例如仅关注匹配或非匹配错误率,忽视了绩效水平在最好和最差水平之间的偏差,并忽略了存在的偏见的规模。本文对当前 BV 偏见评估指标的局限性进行了深入分析,并通过实验验证了它们的使用价值和局限性。此外,我们引入了一种新的通用的 BV 偏见评估指标——“组内误差差异(SEDG)”。我们对控制性合成数据集的实验结果表明,使用现有指标可以有效地量化 demographic 偏见。我们还讨论了在模拟 demographic 偏见场景中应用偏见评估指标的适用性,并提供了基于场景的指标建议。我们的代码可在 \url{这个链接} 上公开使用。

URL

https://arxiv.org/abs/2404.15385

PDF

https://arxiv.org/pdf/2404.15385.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot