Paper Reading AI Learner

GRSN: Gated Recurrent Spiking Neurons for POMDPs and MARL

2024-04-24 02:20:50
Lang Qin, Ziming Wang, Runhao Jiang, Rui Yan, Huajin Tang

Abstract

Spiking neural networks (SNNs) are widely applied in various fields due to their energy-efficient and fast-inference capabilities. Applying SNNs to reinforcement learning (RL) can significantly reduce the computational resource requirements for agents and improve the algorithm's performance under resource-constrained conditions. However, in current spiking reinforcement learning (SRL) algorithms, the simulation results of multiple time steps can only correspond to a single-step decision in RL. This is quite different from the real temporal dynamics in the brain and also fails to fully exploit the capacity of SNNs to process temporal data. In order to address this temporal mismatch issue and further take advantage of the inherent temporal dynamics of spiking neurons, we propose a novel temporal alignment paradigm (TAP) that leverages the single-step update of spiking neurons to accumulate historical state information in RL and introduces gated units to enhance the memory capacity of spiking neurons. Experimental results show that our method can solve partially observable Markov decision processes (POMDPs) and multi-agent cooperation problems with similar performance as recurrent neural networks (RNNs) but with about 50% power consumption.

Abstract (translated)

尖峰神经网络(SNNs)因其在节能和快速推理能力而广泛应用于各种领域。将SNN应用于强化学习(RL)可以显著降低代理程序的计算资源需求,并在资源受限条件下提高算法的性能。然而,在当前的尖峰强化学习(SRL)算法中,多个时间步的模拟结果只能对应于RL中的单步决策。这与大脑的实际时间动态以及SNNs处理时间数据的能力之间存在很大的差异。为了解决这一时间差问题,并更好地利用尖峰神经元的固有时间动态,我们提出了一个新的时间对齐范式(TAP)。它利用尖峰神经元的单步更新来累积历史状态信息,并引入门控单元来增强尖峰神经元的记忆容量。实验结果表明,我们的方法可以与具有类似性能的循环神经网络(RNNs)解决部分可观察的马尔可夫决策过程(POMDP)和多智能体合作问题,但功耗大约为RNN的50%。

URL

https://arxiv.org/abs/2404.15597

PDF

https://arxiv.org/pdf/2404.15597.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot