Paper Reading AI Learner

Deep Learning-based Prediction of Breast Cancer Tumor and Immune Phenotypes from Histopathology

2024-04-25 08:15:37
Tiago Gonçalves, Dagoberto Pulido-Arias, Julian Willett, Katharina V. Hoebel, Mason Cleveland, Syed Rakin Ahmed, Elizabeth Gerstner, Jayashree Kalpathy-Cramer, Jaime S. Cardoso, Christopher P. Bridge, Albert E. Kim

Abstract

The interactions between tumor cells and the tumor microenvironment (TME) dictate therapeutic efficacy of radiation and many systemic therapies in breast cancer. However, to date, there is not a widely available method to reproducibly measure tumor and immune phenotypes for each patient's tumor. Given this unmet clinical need, we applied multiple instance learning (MIL) algorithms to assess activity of ten biologically relevant pathways from the hematoxylin and eosin (H&E) slide of primary breast tumors. We employed different feature extraction approaches and state-of-the-art model architectures. Using binary classification, our models attained area under the receiver operating characteristic (AUROC) scores above 0.70 for nearly all gene expression pathways and on some cases, exceeded 0.80. Attention maps suggest that our trained models recognize biologically relevant spatial patterns of cell sub-populations from H&E. These efforts represent a first step towards developing computational H&E biomarkers that reflect facets of the TME and hold promise for augmenting precision oncology.

Abstract (translated)

肿瘤细胞与肿瘤微环境(TME)之间的相互作用决定了放射治疗和许多系统治疗在乳腺癌中的治疗效果。然而,目前还没有一种可重复测量每个患者肿瘤的肿瘤和免疫表型的广泛可用方法。鉴于这一未满足的临床需求,我们将多实例学习(MIL)算法应用于从原始乳腺癌的哈希和电子显微镜(H&E)切片评估十种生物相关的通路的活动。我们采用了不同的特征提取方法和最先进的模型架构。使用二分类,我们的模型在几乎所有基因表达通路上的接收者操作特征(AUROC)分数都超过了0.70,在某些情况下甚至超过了0.80。注意力图表明,经过训练的模型能够识别H&E中的细胞亚群的空间模式。这些努力代表了解决计算H&E生物标志物的第一步,这些生物标志物可以反映TME的方面,并具有提高精准癌症治疗的精度的潜力。

URL

https://arxiv.org/abs/2404.16397

PDF

https://arxiv.org/pdf/2404.16397.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot