Paper Reading AI Learner

CNN-LSTM and Transfer Learning Models for Malware Classification based on Opcodes and API Calls

2024-05-04 03:13:13
Ahmed Bensaoud, Jugal Kalita

Abstract

In this paper, we propose a novel model for a malware classification system based on Application Programming Interface (API) calls and opcodes, to improve classification accuracy. This system uses a novel design of combined Convolutional Neural Network and Long Short-Term Memory. We extract opcode sequences and API Calls from Windows malware samples for classification. We transform these features into N-grams (N = 2, 3, and 10)-gram sequences. Our experiments on a dataset of 9,749,57 samples produce high accuracy of 99.91% using the 8-gram sequences. Our method significantly improves the malware classification performance when using a wide range of recent deep learning architectures, leading to state-of-the-art performance. In particular, we experiment with ConvNeXt-T, ConvNeXt-S, RegNetY-4GF, RegNetY-8GF, RegNetY-12GF, EfficientNetV2, Sequencer2D-L, Swin-T, ViT-G/14, ViT-Ti, ViT-S, VIT-B, VIT-L, and MaxViT-B. Among these architectures, Swin-T and Sequencer2D-L architectures achieved high accuracies of 99.82% and 99.70%, respectively, comparable to our CNN-LSTM architecture although not surpassing it.

Abstract (translated)

在本文中,我们提出了一个基于API调用和opcodes的新型恶意软件分类系统模型,以提高分类准确性。该系统采用了一种新颖的结合卷积神经网络和长短时记忆的架构。我们通过对Windows恶意软件样本的分类,提取opcode序列和API调用。我们将这些特征转换为N-gram(N = 2, 3, 和10)序列。我们对9,749,57个样本的实验结果表明,使用8-gram序列取得了99.91%的高准确率。我们的方法在使用各种最新的深度学习架构时显著提高了恶意软件分类的性能,达到了最先进水平。特别是,我们进行了对ConvNeXt-T、ConvNeXt-S、RegNetY-4GF、RegNetY-8GF、RegNetY-12GF、EfficientNetV2、Sequencer2D-L、Swin-T、ViT-G/14、ViT-Ti、ViT-S、VIT-B、VIT-L和MaxViT-B架构的实验。在这些架构中,Swin-T和Sequencer2D-L架构的准确率分别为99.82%和99.70%, respectively,尽管没有超过我们的CNN-LSTM架构,但与我们的CNN-LSTM架构相当。

URL

https://arxiv.org/abs/2405.02548

PDF

https://arxiv.org/pdf/2405.02548.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot