Paper Reading AI Learner

Improving Offline Reinforcement Learning with Inaccurate Simulators

2024-05-07 13:29:41
Yiwen Hou, Haoyuan Sun, Jinming Ma, Feng Wu

Abstract

Offline reinforcement learning (RL) provides a promising approach to avoid costly online interaction with the real environment. However, the performance of offline RL highly depends on the quality of the datasets, which may cause extrapolation error in the learning process. In many robotic applications, an inaccurate simulator is often available. However, the data directly collected from the inaccurate simulator cannot be directly used in offline RL due to the well-known exploration-exploitation dilemma and the dynamic gap between inaccurate simulation and the real environment. To address these issues, we propose a novel approach to combine the offline dataset and the inaccurate simulation data in a better manner. Specifically, we pre-train a generative adversarial network (GAN) model to fit the state distribution of the offline dataset. Given this, we collect data from the inaccurate simulator starting from the distribution provided by the generator and reweight the simulated data using the discriminator. Our experimental results in the D4RL benchmark and a real-world manipulation task confirm that our method can benefit more from both inaccurate simulator and limited offline datasets to achieve better performance than the state-of-the-art methods.

Abstract (translated)

离线强化学习(RL)提供了一种有前途的方法来避免与真实环境进行昂贵的在线交互。然而,离线RL的性能高度依赖于数据质量,这可能导致学习过程中的扩展误差。在许多机器人应用中,通常缺乏准确的仿真器。然而,由于众所周知的学习-探索困境和仿真器和现实环境之间的动态差距,直接从不准确的仿真器中收集的数据无法直接用于离线RL。为解决这些问题,我们提出了一种结合离线数据和低质量仿真数据的新方法。具体来说,我们预训练了一个生成对抗网络(GAN)模型来适应离线数据的状态分布。然后,我们从生成器提供的分布开始收集离线仿真器的数据,并使用判别器对模拟数据进行重新加权。我们在D4RL基准和现实世界的操作任务中的实验结果证实,我们的方法可以从不准确的仿真器和有限离线数据中获得更好的性能,比最先进的方法具有更高的性能。

URL

https://arxiv.org/abs/2405.04307

PDF

https://arxiv.org/pdf/2405.04307.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot