Paper Reading AI Learner

Prediction of overall survival and molecular markers in gliomas via analysis of digital pathology images using deep learning

2019-09-19 17:53:42
Saima Rathore, Muhammad Aksam Iftikhar, Zissimos Mourelatos

Abstract

Cancer histology reveals disease progression and associated molecular processes, and contains rich phenotypic information that is predictive of outcome. In this paper, we developed a computational approach based on deep learning to predict the overall survival and molecular subtypes of glioma patients from microscopic images of tissue biopsies, reflecting measures of microvascular proliferation, mitotic activity, nuclear atypia, and the presence of necrosis. Whole-slide images from 663 unique patients [IDH: 333 IDH-wildtype, 330 IDH-mutants, 1p/19q: 201 1p/19q non-codeleted, 129 1p/19q codeleted] were obtained from TCGA. Sub-images that were free of artifacts and that contained viable tumor with descriptive histologic characteristics were extracted, which were further used for training and testing a deep neural network. The output layer of the network was configured in two different ways: (i) a final Cox model layer to output a prediction of patient risk, and (ii) a final layer with sigmoid activation function, and stochastic gradient decent based optimization with binary cross-entropy loss. Both survival prediction and molecular subtype classification produced promising results using our model. The c-statistic was estimated to be 0.82 (p-value=4.8x10-5) between the risk scores of the proposed deep learning model and overall survival, while accuracies of 88% (area under the curve [AUC]=0.86) were achieved in the detection of IDH mutational status and 1p/19q codeletion. These findings suggest that the deep learning techniques can be applied to microscopic images for objective, accurate, and integrated prediction of outcome for glioma patients. The proposed marker may contribute to (i) stratification of patients into clinical trials, (ii) patient selection for targeted therapy, and (iii) personalized treatment planning.

Abstract (translated)

URL

https://arxiv.org/abs/1909.09124

PDF

https://arxiv.org/pdf/1909.09124.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot