Paper Reading AI Learner

Learning to Predict More Accurate Text Instances for Scene Text Detection

2019-11-18 04:35:47
XiaoQian Li, Jie Liu, ShuWu Zhang, GuiXuan Zhang

Abstract

At present, multi-oriented text detection methods based on deep neural network have achieved promising performances on various benchmarks. Nevertheless, there are still some difficulties for arbitrary shape text detection, especially for a simple and proper representation of arbitrary shape text instances. In this paper, a pixel-based text detector is proposed to facilitate the representation and prediction of text instances with arbitrary shapes in a simple manner. Firstly, to alleviate the effect of the target vertex sorting and achieve the direct regression of arbitrary shape text instances, the starting-point-independent coordinates regression loss is proposed. Furthermore, to predict more accurate text instances, the text instance accuracy loss is proposed as an assistant task to refine the predicted coordinates under the guidance of IoU. To evaluate the effectiveness of our detector, extensive experiments have been carried on public benchmarks. On the ICDAR 2015 Incidental Scene Text benchmark, our method achieves 86.5% of F-measure, and we obtain 84.8% of F-measure on Total-Text benchmark. The results show that our method can reach state-of-the-art performance.

Abstract (translated)

URL

https://arxiv.org/abs/1911.07423

PDF

https://arxiv.org/pdf/1911.07423.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot