Paper Reading AI Learner

Ultra High Fidelity Image Compression with $ell_infty$-constrained Encoding and Deep Decoding

2020-02-10 00:33:39
Xi Zhang, Xiaolin Wu

Abstract

In many professional fields, such as medicine, remote sensing and sciences, users often demand image compression methods to be mathematically lossless. But lossless image coding has a rather low compression ratio (around 2:1 for natural images). The only known technique to achieve significant compression while meeting the stringent fidelity requirements is the methodology of $\ell_\infty$-constrained coding that was developed and standardized in nineties. We make a major progress in $\ell_\infty$-constrained image coding after two decades, by developing a novel CNN-based soft $\ell_\infty$-constrained decoding method. The new method repairs compression defects by using a restoration CNN called the $\ell_\infty\mbox{-SDNet}$ to map a conventionally decoded image to the latent image. A unique strength of the $\ell_\infty\mbox{-SDNet}$ is its ability to enforce a tight error bound on a per pixel basis. As such, no small distinctive structures of the original image can be dropped or distorted, even if they are statistical outliers that are otherwise sacrificed by mainstream CNN restoration methods. More importantly, this research ushers in a new image compression system of $\ell_\infty$-constrained encoding and deep soft decoding ($\ell_\infty\mbox{-ED}^2$). The $\ell_\infty \mbox{-ED}^2$ approach beats the best of existing lossy image compression methods (e.g., BPG, WebP, etc.) not only in $\ell_\infty$ but also in $\ell_2$ error metric and perceptual quality, for bit rates near the threshold of perceptually transparent reconstruction. Operationally, the new compression system is practical, with a low-complexity real-time encoder and a cascade decoder consisting of a fast initial decoder and an optional CNN soft decoder.

Abstract (translated)

URL

https://arxiv.org/abs/2002.03482

PDF

https://arxiv.org/pdf/2002.03482.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot