Paper Reading AI Learner

Unsupervised Denoising for Satellite Imagery using Wavelet Subband CycleGAN

2020-02-23 07:11:05
Joonyoung Song, Jae-Heon Jeong, Dae-Soon Park, Hyun-Ho Kim, Doo-Chun Seo, Jong Chul Ye

Abstract

Multi-spectral satellite imaging sensors acquire various spectral band images such as red (R), green (G), blue (B), near-infrared (N), etc. Thanks to the unique spectroscopic property of each spectral band with respective to the objects on the ground, multi-spectral satellite imagery can be used for various geological survey applications. Unfortunately, image artifacts from imaging sensor noises often affect the quality of scenes and have negative impacts on the applications of satellite imagery. Recently, deep learning approaches have been extensively explored for the removal of noises in satellite imagery. Most deep learning denoising methods, however, follow a supervised learning scheme, which requires matched noisy image and clean image pairs that are difficult to collect in real situations. In this paper, we propose a novel unsupervised multispectral denoising method for satellite imagery using wavelet subband cycle-consistent adversarial network (WavCycleGAN). The proposed method is based on unsupervised learning scheme using adversarial loss and cycle-consistency loss to overcome the lack of paired data. Moreover, in contrast to the standard image domain cycleGAN, we introduce a wavelet subband domain learning scheme for effective denoising without sacrificing high frequency components such as edges and detail information. Experimental results for the removal of vertical stripe and wave noises in satellite imaging sensors demonstrate that the proposed method effectively removes noises and preserves important high frequency features of satellite images.

Abstract (translated)

URL

https://arxiv.org/abs/2002.09847

PDF

https://arxiv.org/pdf/2002.09847.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot