Paper Reading AI Learner

Cross-Spectrum Dual-Subspace Pairing for RGB-infrared Cross-Modality Person Re-Identification

2020-02-29 09:01:39
Xing Fan, Hao Luo, Chi Zhang, Wei Jiang

Abstract

Due to its potential wide applications in video surveillance and other computer vision tasks like tracking, person re-identification (ReID) has become popular and been widely investigated. However, conventional person re-identification can only handle RGB color images, which will fail at dark conditions. Thus RGB-infrared ReID (also known as Infrared-Visible ReID or Visible-Thermal ReID) is proposed. Apart from appearance discrepancy in traditional ReID caused by illumination, pose variations and viewpoint changes, modality discrepancy produced by cameras of the different spectrum also exists, which makes RGB-infrared ReID more difficult. To address this problem, we focus on extracting the shared cross-spectrum features of different modalities. In this paper, a novel multi-spectrum image generation method is proposed and the generated samples are utilized to help the network to find discriminative information for re-identifying the same person across modalities. Another challenge of RGB-infrared ReID is that the intra-person (images from the same person) discrepancy is often larger than the inter-person (images from different persons) discrepancy, so a dual-subspace pairing strategy is proposed to alleviate this problem. Combining those two parts together, we also design a one-stream neural network combining the aforementioned methods to extract compact representations of person images, called Cross-spectrum Dual-subspace Pairing (CDP) model. Furthermore, during the training process, we also propose a Dynamic Hard Spectrum Mining method to automatically mine more hard samples from hard spectrum based on the current model state to further boost the performance. Extensive experimental results on two public datasets, SYSU-MM01 with RGB + near-infrared images and RegDB with RGB + far-infrared images, have demonstrated the efficiency and generality of our proposed method.

Abstract (translated)

URL

https://arxiv.org/abs/2003.00213

PDF

https://arxiv.org/pdf/2003.00213.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot