Paper Reading AI Learner

What the MASK? Making Sense of Language-Specific BERT Models

2020-03-05 20:42:51
Debora Nozza, Federico Bianchi, Dirk Hovy

Abstract

Recently, Natural Language Processing (NLP) has witnessed an impressive progress in many areas, due to the advent of novel, pretrained contextual representation models. In particular, Devlin et al. (2019) proposed a model, called BERT (Bidirectional Encoder Representations from Transformers), which enables researchers to obtain state-of-the art performance on numerous NLP tasks by fine-tuning the representations on their data set and task, without the need for developing and training highly-specific architectures. The authors also released multilingual BERT (mBERT), a model trained on a corpus of 104 languages, which can serve as a universal language model. This model obtained impressive results on a zero-shot cross-lingual natural inference task. Driven by the potential of BERT models, the NLP community has started to investigate and generate an abundant number of BERT models that are trained on a particular language, and tested on a specific data domain and task. This allows us to evaluate the true potential of mBERT as a universal language model, by comparing it to the performance of these more specific models. This paper presents the current state of the art in language-specific BERT models, providing an overall picture with respect to different dimensions (i.e. architectures, data domains, and tasks). Our aim is to provide an immediate and straightforward overview of the commonalities and differences between Language-Specific (language-specific) BERT models and mBERT. We also provide an interactive and constantly updated website that can be used to explore the information we have collected, at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2003.02912

PDF

https://arxiv.org/pdf/2003.02912.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot