Paper Reading AI Learner

On the Texture Bias for Few-Shot CNN Segmentation

2020-03-09 11:55:47
Reza Azad, Abdur R Fayjie, Claude Kauffman, Ismail Ben Ayed, Marco Pedersoli, Jose Dolz

Abstract

Despite the initial belief that Convolutional Neural Networks (CNNs) are driven by shapes to perform visual recognition tasks, recent evidence suggests that texture bias in CNNs provides higher performing and more robust models. This contrasts with the perceptual bias in the human visual cortex, which has a stronger preference towards shape components. Perceptual differences may explain why CNNs achieve human-level performance when large labeled datasets are available, but their performance significantly degrades in low-labeled data scenarios, such as few-shot semantic segmentation. To remove the texture bias in the context of few-shot learning, we propose a novel architecture that integrates a set of difference of Gaussians (DoG) to attenuate high-frequency local components in the feature space. This produces a set of modified feature maps, whose high-frequency components are diminished at different standard deviation values of the Gaussian distribution in the spatial domain. As this results in multiple feature maps for a single image, we employ a bi-directional convolutional long-short-term-memory to efficiently merge the multi scale-space representations. We perform extensive experiments on two well-known few-shot segmentation benchmarks -Pascal i5 and FSS-1000- and demonstrate that our method outperforms significantly state-of-the-art approaches. The code is available at: this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2003.04052

PDF

https://arxiv.org/pdf/2003.04052.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot