Paper Reading AI Learner

BigGAN-based Bayesian reconstruction of natural images from human brain activity

2020-03-13 04:32:11
Kai Qiao, Jian Chen, Linyuan Wang, Chi Zhang, Li Tong, Bin Yan

Abstract

In the visual decoding domain, visually reconstructing presented images given the corresponding human brain activity monitored by functional magnetic resonance imaging (fMRI) is difficult, especially when reconstructing viewed natural images. Visual reconstruction is a conditional image generation on fMRI data and thus generative adversarial network (GAN) for natural image generation is recently introduced for this task. Although GAN-based methods have greatly improved, the fidelity and naturalness of reconstruction are still unsatisfactory due to the small number of fMRI data samples and the instability of GAN training. In this study, we proposed a new GAN-based Bayesian visual reconstruction method (GAN-BVRM) that includes a classifier to decode categories from fMRI data, a pre-trained conditional generator to generate natural images of specified categories, and a set of encoding models and evaluator to evaluate generated images. GAN-BVRM employs the pre-trained generator of the prevailing BigGAN to generate masses of natural images, and selects the images that best matches with the corresponding brain activity through the encoding models as the reconstruction of the image stimuli. In this process, the semantic and detailed contents of reconstruction are controlled by decoded categories and encoding models, respectively. GAN-BVRM used the Bayesian manner to avoid contradiction between naturalness and fidelity from current GAN-based methods and thus can improve the advantages of GAN. Experimental results revealed that GAN-BVRM improves the fidelity and naturalness, that is, the reconstruction is natural and similar to the presented image stimuli.

Abstract (translated)

URL

https://arxiv.org/abs/2003.06105

PDF

https://arxiv.org/pdf/2003.06105.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot