Paper Reading AI Learner

DHP: Differentiable Meta Pruning via HyperNetworks

2020-03-30 17:59:18
Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, Radu Timofte

Abstract

Network pruning has been the driving force for the efficient inference of neural networks and the alleviation of model storage and transmission burden. Traditional network pruning methods focus on the per-filter influence on the network accuracy by analyzing the filter distribution. With the advent of AutoML and neural architecture search (NAS), pruning has become topical with automatic mechanism and searching based architecture optimization. However, current automatic designs rely on either reinforcement learning or evolutionary algorithm, which often do not have a theoretical convergence guarantee or do not converge in a meaningful time limit. In this paper, we propose a differentiable pruning method via hypernetworks for automatic network pruning and layer-wise configuration optimization. A hypernetwork is designed to generate the weights of the backbone network. The input of the hypernetwork, namely, the latent vectors control the output channels of the layers of backbone network. By applying $\ell_1$ sparsity regularization to the latent vectors and utilizing proximal gradient, sparse latent vectors can be obtained with removed zero elements. Thus, the corresponding elements of the hypernetwork outputs can also be removed, achieving the effect of network pruning. The latent vectors of all the layers are pruned together, resulting in an automatic layer configuration. Extensive experiments are conducted on various networks for image classification, single image super-resolution, and denoising. And the experimental results validate the proposed method.

Abstract (translated)

URL

https://arxiv.org/abs/2003.13683

PDF

https://arxiv.org/pdf/2003.13683.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot