Paper Reading AI Learner

A Transfer Learning approach to Heatmap Regression for Action Unit intensity estimation

2020-04-14 16:51:13
Ioanna Ntinou, Enrique Sanchez, Adrian Bulat, Michel Valstar, Georgios Tzimiropoulos

Abstract

Action Units (AUs) are geometrically-based atomic facial muscle movements known to produce appearance changes at specific facial locations. Motivated by this observation we propose a novel AU modelling problem that consists of jointly estimating their localisation and intensity. To this end, we propose a simple yet efficient approach based on Heatmap Regression that merges both problems into a single task. A Heatmap models whether an AU occurs or not at a given spatial location. To accommodate the joint modelling of AUs intensity, we propose variable size heatmaps, with their amplitude and size varying according to the labelled intensity. Using Heatmap Regression, we can inherit from the progress recently witnessed in facial landmark localisation. Building upon the similarities between both problems, we devise a transfer learning approach where we exploit the knowledge of a network trained on large-scale facial landmark datasets. In particular, we explore different alternatives for transfer learning through a) fine-tuning, b) adaptation layers, c) attention maps, and d) reparametrisation. Our approach effectively inherits the rich facial features produced by a strong face alignment network, with minimal extra computational cost. We empirically validate that our system sets a new state-of-the-art on three popular datasets, namely BP4D, DISFA, and FERA2017.

Abstract (translated)

URL

https://arxiv.org/abs/2004.06657

PDF

https://arxiv.org/pdf/2004.06657.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot