Paper Reading AI Learner

ParaCNN: Visual Paragraph Generation via Adversarial Twin Contextual CNNs

2020-04-21 19:54:18
Shiyang Yan, Yang Hua, Neil Robertson

Abstract

Image description generation plays an important role in many real-world applications, such as image retrieval, automatic navigation, and disabled people support. A well-developed task of image description generation is image captioning, which usually generates a short captioning sentence and thus neglects many of fine-grained properties, e.g., the information of subtle objects and their relationships. In this paper, we study the visual paragraph generation, which can describe the image with a long paragraph containing rich details. Previous research often generates the paragraph via a hierarchical Recurrent Neural Network (RNN)-like model, which has complex memorising, forgetting and coupling mechanism. Instead, we propose a novel pure CNN model, ParaCNN, to generate visual paragraph using hierarchical CNN architecture with contextual information between sentences within one paragraph. The ParaCNN can generate an arbitrary length of a paragraph, which is more applicable in many real-world applications. Furthermore, to enable the ParaCNN to model paragraph comprehensively, we also propose an adversarial twin net training scheme. During training, we force the forwarding network's hidden features to be close to that of the backwards network by using adversarial training. During testing, we only use the forwarding network, which already includes the knowledge of the backwards network, to generate a paragraph. We conduct extensive experiments on the Stanford Visual Paragraph dataset and achieve state-of-the-art performance.

Abstract (translated)

URL

https://arxiv.org/abs/2004.10258

PDF

https://arxiv.org/pdf/2004.10258.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot