Paper Reading AI Learner

Image Processing Failure and Deep Learning Success in Lawn Measurement

2020-04-22 03:20:16
J. Wilkins, M. V. Nguyen, B. Rahmani

Abstract

tract: Lawn area measurement is an application of image processing and deep learning. Researchers have been used hierarchical networks, segmented images and many other methods to measure lawn area. Methods effectiveness and accuracy varies. In this project Image processing and deep learning methods has been compared to find the best way to measure the lawn area. Three Image processing methods using OpenCV has been compared to Convolutional Neural network which is one of the most famous and effective deep learning methods. We used Keras and TensorFlow to estimate the lawn area. Convolutional Neural Network or shortly CNN shows very high accuracy (94-97%) for this purpose. In image processing methods, Thresholding with 80-87% accuracy and Edge detection are effective methods to measure the lawn area but Contouring with 26-31% accuracy does not calculate the lawn area successfully. We may conclude that deep learning methods especially CNN could be the best detective method comparing to image processing and other deep learning techniques.

Abstract (translated)

URL

https://arxiv.org/abs/2004.10382

PDF

https://arxiv.org/pdf/2004.10382


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot