Paper Reading AI Learner

Zero-shot Neural Retrieval via Domain-targeted Synthetic Query Generation

2020-04-29 22:21:31
Ji Ma, Ivan Korotkov, Yinfei Yang, Keith Hall, Ryan McDonald

Abstract

Deep neural scoring models have recently been shown to improve ranking quality on a number of benchmarks (Guo et al., 2016; Daiet al., 2018; MacAvaney et al., 2019; Yanget al., 2019a). However, these methods rely on underlying ad-hoc retrieval systems to generate candidates for scoring, which are rarely neural themselves (Zamani et al., 2018). Re-cent work has shown that the performance of ad-hoc neural retrieval systems can be competitive with a number of baselines (Zamani et al.,2018), potentially leading the way to full end-to-end neural retrieval. A major road-block to the adoption of ad-hoc retrieval models is that they require large supervised training sets to surpass classic term-based techniques, which can be developed from raw corpora. Previous work shows weakly supervised data can yield competitive results, e.g., click data (Dehghaniet al., 2017; Borisov et al., 2016). Unfortunately for many domains, even weakly supervised data can be scarce. In this paper, we pro-pose an approach to zero-shot learning (Xianet al., 2018) for ad-hoc retrieval models that relies on synthetic query generation. Crucially, the query generation system is trained on general domain data, but is applied to documents in the targeted domain. This allows us to create arbitrarily large, yet noisy, query-document relevance pairs that are domain targeted. On a number of benchmarks, we show that this is an effective strategy for building neural retrieval models for specialised domains.

Abstract (translated)

URL

https://arxiv.org/abs/2004.14503

PDF

https://arxiv.org/pdf/2004.14503.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot