Paper Reading AI Learner

Making Robots Draw A Vivid Portrait In Two Minutes

2020-05-12 03:02:24
Fei Gao, Jingjie Zhu, Zeyuan Yu, Peng Li, Tao Wang

Abstract

Significant progress has been made with artistic robots. However, existing robots fail to produce high-quality portraits in a short time. In this work, we present a drawing robot, which can automatically transfer a facial picture to a vivid portrait, and then draw it on paper within two minutes averagely. At the heart of our system is a novel portrait synthesis algorithm based on deep learning. Innovatively, we employ a self-consistency loss, which makes the algorithm capable of generating continuous and smooth brush-strokes. Besides, we propose a componential-sparsity constraint to reduce the number of brush-strokes over insignificant areas. We also implement a local sketch synthesis algorithm, and several pre- and post-processing techniques to deal with the background and details. The portrait produced by our algorithm successfully captures individual characteristics by using a sparse set of continuous brush-strokes. Finally, the portrait is converted to a sequence of trajectories and reproduced by a 3-degree-of-freedom robotic arm. The whole portrait drawing robotic system is named AiSketcher. Extensive experiments show that AiSketcher can produce considerably high-quality sketches for a wide range of pictures, including faces in-the-wild and universal images of arbitrary content. To our best knowledge, AiSketcher is the first portrait drawing robot that uses deep learning techniques. AiSketcher has attended a quite number of exhibitions and shown remarkable performance under diverse circumstances.

Abstract (translated)

URL

https://arxiv.org/abs/2005.05526

PDF

https://arxiv.org/pdf/2005.05526.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot