Paper Reading AI Learner

ValueNet: A Neural Text-to-SQL Architecture Incorporating Values

2020-05-29 15:43:39
Ursin Brunner, Kurt Stockinger

Abstract

Building natural language interfaces for databases has been a long-standing challenge for several decades. The major advantage of these so-called text-to-SQL systems is that end-users can query complex databases without the need to know SQL or the underlying database schema. Due to significant advancements in machine learning, the recent focus of research has been on neural networks to tackle this challenge on complex datasets like Spider. Several recent text-to-SQL systems achieve promising results on this dataset. However, none of them extracts and incorporates values from the user questions for generating SQL statements. Thus, the practical use of these systems in a real-world scenario has not been sufficiently demonstrated yet. In this paper we propose ValueNet light and ValueNet -- the first end-to-end text-to-SQL system incorporating values on the challenging Spider dataset. The main idea of our approach is to use not only metadata information about the underlying database but also information on the base data as input for our neural network architecture. In particular, we propose a novel architecture sketch to extract values from a user question and come up with possible value candidates which are not explicitly mentioned in the question. We then use a neural model based on an encoder-decoder architecture to synthesize the SQL query. Finally, we evaluate our model on the Spider challenge using the Execution Accuracy metric, a more difficult metric than used by most participants of the challenge. Our experimental evaluation demonstrates that ValueNet light and ValueNet reach state-of-the-art results of 64% and 60% accuracy, respectively, for translating from text to SQL, even when applying this more difficult metric than used by previous work.

Abstract (translated)

URL

https://arxiv.org/abs/2006.00888

PDF

https://arxiv.org/pdf/2006.00888.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot