Paper Reading AI Learner

Exploring Category-Agnostic Clusters for Open-Set Domain Adaptation

2020-06-11 16:19:02
Yingwei Pan, Ting Yao, Yehao Li, Chong-Wah Ngo, Tao Mei

Abstract

Unsupervised domain adaptation has received significant attention in recent years. Most of existing works tackle the closed-set scenario, assuming that the source and target domains share the exactly same categories. In practice, nevertheless, a target domain often contains samples of classes unseen in source domain (i.e., unknown class). The extension of domain adaptation from closed-set to such open-set situation is not trivial since the target samples in unknown class are not expected to align with the source. In this paper, we address this problem by augmenting the state-of-the-art domain adaptation technique, Self-Ensembling, with category-agnostic clusters in target domain. Specifically, we present Self-Ensembling with Category-agnostic Clusters (SE-CC) -- a novel architecture that steers domain adaptation with the additional guidance of category-agnostic clusters that are specific to target domain. These clustering information provides domain-specific visual cues, facilitating the generalization of Self-Ensembling for both closed-set and open-set scenarios. Technically, clustering is firstly performed over all the unlabeled target samples to obtain the category-agnostic clusters, which reveal the underlying data space structure peculiar to target domain. A clustering branch is capitalized on to ensure that the learnt representation preserves such underlying structure by matching the estimated assignment distribution over clusters to the inherent cluster distribution for each target sample. Furthermore, SE-CC enhances the learnt representation with mutual information maximization. Extensive experiments are conducted on Office and VisDA datasets for both open-set and closed-set domain adaptation, and superior results are reported when comparing to the state-of-the-art approaches.

Abstract (translated)

URL

https://arxiv.org/abs/2006.06567

PDF

https://arxiv.org/pdf/2006.06567.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot