Paper Reading AI Learner

Data-Efficient Ranking Distillation for Image Retrieval

2020-07-10 10:59:16
Zakaria Laskar, Juho Kannala

Abstract

Recent advances in deep learning has lead to rapid developments in the field of image retrieval. However, the best performing architectures incur significant computational cost. Recent approaches tackle this issue using knowledge distillation to transfer knowledge from a deeper and heavier architecture to a much smaller network. In this paper we address knowledge distillation for metric learning problems. Unlike previous approaches, our proposed method jointly addresses the following constraints i) limited queries to teacher model, ii) black box teacher model with access to the final output representation, and iii) small fraction of original training data without any ground-truth labels. In addition, the distillation method does not require the student and teacher to have same dimensionality. Addressing these constraints reduces computation requirements, dependency on large-scale training datasets and addresses practical scenarios of limited or partial access to private data such as teacher models or the corresponding training data/labels. The key idea is to augment the original training set with additional samples by performing linear interpolation in the final output representation space. Distillation is then performed in the joint space of original and augmented teacher-student sample representations. Results demonstrate that our approach can match baseline models trained with full supervision. In low training sample settings, our approach outperforms the fully supervised approach on two challenging image retrieval datasets, ROxford5k and RParis6k \cite{Roxf} with the least possible teacher supervision.

Abstract (translated)

URL

https://arxiv.org/abs/2007.05299

PDF

https://arxiv.org/pdf/2007.05299.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot