Paper Reading AI Learner

Hierarchical Contrastive Motion Learning for Video Action Recognition

2020-07-20 17:59:22
Xitong Yang, Xiaodong Yang, Sifei Liu, Deqing Sun, Larry Davis, Jan Kautz

Abstract

One central question for video action recognition is how to model motion. In this paper, we present hierarchical contrastive motion learning, a new self-supervised learning framework to extract effective motion representations from raw video frames. Our approach progressively learns a hierarchy of motion features that correspond to different abstraction levels in a network. This hierarchical design bridges the semantic gap between low-level motion cues and high-level recognition tasks, and promotes the fusion of appearance and motion information at multiple levels. At each level, an explicit motion self-supervision is provided via contrastive learning to enforce the motion features at the current level to predict the future ones at the previous level. Thus, the motion features at higher levels are trained to gradually capture semantic dynamics and evolve more discriminative for action recognition. Our motion learning module is lightweight and flexible to be embedded into various backbone networks. Extensive experiments on four benchmarks show that the proposed approach consistently achieves superior results.

Abstract (translated)

URL

https://arxiv.org/abs/2007.10321

PDF

https://arxiv.org/pdf/2007.10321.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot