Paper Reading AI Learner

Discovering Traveling Companions using Autoencoders

2020-07-23 01:16:38
Xiaochang Li, Bei Chen, Xuesong Lu

Abstract

With the wide adoption of mobile devices, today's location tracking systems such as satellites, cellular base stations and wireless access points are continuously producing tremendous amounts of location data of moving objects. The ability to discover moving objects that travel together, i.e., traveling companions, from their trajectories is desired by many applications such as intelligent transportation systems and location-based services. Existing algorithms are either based on pattern mining methods that define a particular pattern of traveling companions or based on representation learning methods that learn similar representations for similar trajectories. The former methods suffer from the pairwise point-matching problem and the latter often ignore the temporal proximity between trajectories. In this work, we propose a generic deep representation learning model using autoencoders, namely, ATTN-MEAN, for the discovery of traveling companions. ATTN-MEAN collectively injects spatial and temporal information into its input embeddings using skip-gram, positional encoding techniques, respectively. Besides, our model further encourages trajectories to learn from their neighbours by leveraging the Sort-Tile-Recursive algorithm, mean operation and global attention mechanism. After obtaining the representations from the encoders, we run DBSCAN to cluster the representations to find travelling companion. The corresponding trajectories in the same cluster are considered as traveling companions. Experimental results suggest that ATTN-MEAN performs better than the state-of-the-art algorithms on finding traveling companions.

Abstract (translated)

URL

https://arxiv.org/abs/2007.11735

PDF

https://arxiv.org/pdf/2007.11735.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot