Paper Reading AI Learner

Imitation Learning for Autonomous Trajectory Learning of Robot Arms in Space

2020-08-10 10:18:04
RB Ashith Shyam, Zhou Hao, Umberto Montanaro, Gerhard Neumann

Abstract

This work adds on to the on-going efforts to provide more autonomy to space robots. Here the concept of programming by demonstration or imitation learning is used for trajectory planning of manipulators mounted on small spacecraft. For greater autonomy in future space missions and minimal human intervention through ground control, a robot arm having 7-Degrees of Freedom (DoF) is envisaged for carrying out multiple tasks like debris removal, on-orbit servicing and assembly. Since actual hardware implementation of microgravity environment is extremely expensive, the demonstration data for trajectory learning is generated using a model predictive controller (MPC) in a physics based simulator. The data is then encoded compactly by Probabilistic Movement Primitives (ProMPs). This offline trajectory learning allows faster reproductions and also avoids any computationally expensive optimizations after deployment in a space environment. It is shown that the probabilistic distribution can be used to generate trajectories to previously unseen situations by conditioning the distribution. The motion of the robot (or manipulator) arm induces reaction forces on the spacecraft hub and hence its attitude changes prompting the Attitude Determination and Control System (ADCS) to take large corrective action that drains energy out of the system. By having a robot arm with redundant DoF helps in finding several possible trajectories from the same start to the same target. This allows the ProMP trajectory generator to sample out the trajectory which is obstacle free as well as having minimal attitudinal disturbances thereby reducing the load on ADCS.

Abstract (translated)

URL

https://arxiv.org/abs/2008.04007

PDF

https://arxiv.org/pdf/2008.04007.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot