Paper Reading AI Learner

Variance-reduced Language Pretraining via a Mask Proposal Network

2020-08-12 14:12:32
Liang Chen, Tianyuan Zhang, Di He, Guolin Ke, Liwei Wang, Tie-Yan Liu

Abstract

Self-supervised learning, a.k.a., pretraining, is important in natural language processing. Most of the pretraining methods first randomly mask some positions in a sentence and then train a model to recover the tokens at the masked positions. In such a way, the model can be trained without human labeling, and the massive data can be used with billion parameters. Therefore, the optimization efficiency becomes critical. In this paper, we tackle the problem from the view of gradient variance reduction. In particular, we first propose a principled gradient variance decomposition theorem, which shows that the variance of the stochastic gradient of the language pretraining can be naturally decomposed into two terms: the variance that arises from the sample of data in a batch, and the variance that arises from the sampling of the mask. The second term is the key difference between selfsupervised learning and supervised learning, which makes the pretraining slower. In order to reduce the variance of the second part, we leverage the importance sampling strategy, which aims at sampling the masks according to a proposal distribution instead of the uniform distribution. It can be shown that if the proposal distribution is proportional to the gradient norm, the variance of the sampling is reduced. To improve efficiency, we introduced a MAsk Proposal Network (MAPNet), which approximates the optimal mask proposal distribution and is trained end-to-end along with the model. According to the experimental result, our model converges much faster and achieves higher performance than the baseline BERT model.

Abstract (translated)

URL

https://arxiv.org/abs/2008.05333

PDF

https://arxiv.org/pdf/2008.05333.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot