Paper Reading AI Learner

Accelerating Federated Learning in Heterogeneous Data and Computational Environments

2020-08-25 21:28:38
Dimitris Stripelis, Jose Luis Ambite

Abstract

There are situations where data relevant to a machine learning problem are distributed among multiple locations that cannot share the data due to regulatory, competitiveness, or privacy reasons. For example, data present in users' cellphones, manufacturing data of companies in a given industrial sector, or medical records located at different hospitals. Moreover, participating sites often have different data distributions and computational capabilities. Federated Learning provides an approach to learn a joint model over all the available data in these environments. In this paper, we introduce a novel distributed validation weighting scheme (DVW), which evaluates the performance of a learner in the federation against a distributed validation set. Each learner reserves a small portion (e.g., 5%) of its local training examples as a validation dataset and allows other learners models to be evaluated against it. We empirically show that DVW results in better performance compared to established methods, such as FedAvg, both under synchronous and asynchronous communication protocols in data and computationally heterogeneous environments.

Abstract (translated)

URL

https://arxiv.org/abs/2008.11281

PDF

https://arxiv.org/pdf/2008.11281.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot