Paper Reading AI Learner

AMBERT: A Pre-trained Language Model with Multi-Grained Tokenization

2020-08-27 00:23:48
Xinsong Zhang, Hang Li

Abstract

Pre-trained language models such as BERT have exhibited remarkable performances in many tasks in natural language understanding (NLU). The tokens in the models are usually fine-grained in the sense that for languages like English they are words or sub-words and for languages like Chinese they are characters. In English, for example, there are multi-word expressions which form natural lexical units and thus the use of coarse-grained tokenization also appears to be reasonable. In fact, both fine-grained and coarse-grained tokenizations have advantages and disadvantages for learning of pre-trained language models. In this paper, we propose a novel pre-trained language model, referred to as AMBERT (A Multi-grained BERT), on the basis of both fine-grained and coarse-grained tokenizations. For English, AMBERT takes both the sequence of words (fine-grained tokens) and the sequence of phrases (coarse-grained tokens) as input after tokenization, employs one encoder for processing the sequence of words and the other encoder for processing the sequence of the phrases, utilizes shared parameters between the two encoders, and finally creates a sequence of contextualized representations of the words and a sequence of contextualized representations of the phrases. Experiments have been conducted on benchmark datasets for Chinese and English, including CLUE, GLUE, SQuAD and RACE. The results show that AMBERT outperforms the existing best performing models in almost all cases, particularly the improvements are significant for Chinese.

Abstract (translated)

URL

https://arxiv.org/abs/2008.11869

PDF

https://arxiv.org/pdf/2008.11869.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot