Paper Reading AI Learner

The Benefits of Autonomous Vehicles for Community-Based Trip Sharing

2020-08-28 18:12:13
Mohd. Hafiz Hasan, Pascal Van Hentenryck

Abstract

This work reconsiders the concept of community-based trip sharing proposed by Hasan et al. (2018) that leverages the structure of commuting patterns and urban communities to optimize trip sharing. It aims at quantifying the benefits of autonomous vehicles for community-based trip sharing, compared to a car-pooling platform where vehicles are driven by their owners. In the considered problem, each rider specifies a desired arrival time for her inbound trip (commuting to work) and a departure time for her outbound trip (commuting back home). In addition, her commute time cannot deviate too much from the duration of a direct trip. Prior work motivated by reducing parking pressure and congestion in the city of Ann Arbor, Michigan, showed that a car-pooling platform for community-based trip sharing could reduce the number of vehicles by close to 60%. This paper studies the potential benefits of autonomous vehicles in further reducing the number of vehicles needed to serve all these commuting trips. It proposes a column-generation procedure that generates and assembles mini routes to serve inbound and outbound trips, using a lexicographic objective that first minimizes the required vehicle count and then the total travel distance. The optimization algorithm is evaluated on a large-scale, real-world dataset of commute trips from the city of Ann Arbor, Michigan. The results of the optimization show that it can leverage autonomous vehicles to reduce the daily vehicle usage by 92%, improving upon the results of the original Commute Trip Sharing Problem by 34%, while also reducing daily vehicle miles traveled by approximately 30%. These results demonstrate the significant potential of autonomous vehicles for the shared commuting of a community to a common work destination.

Abstract (translated)

URL

https://arxiv.org/abs/2008.12800

PDF

https://arxiv.org/pdf/2008.12800.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot