Paper Reading AI Learner

Multi-channel MRI Embedding: An EffectiveStrategy for Enhancement of Human Brain WholeTumor Segmentation

2020-09-13 23:44:16
Apurva Pandya, Catherine Samuel, Nisargkumar Patel, Vaibhavkumar Patel, Thangarajah Akilan

Abstract

One of the most important tasks in medical image processing is the brain's whole tumor segmentation. It assists in quicker clinical assessment and early detection of brain tumors, which is crucial for lifesaving treatment procedures of patients. Because, brain tumors often can be malignant or benign, if they are detected at an early stage. A brain tumor is a collection or a mass of abnormal cells in the brain. The human skull encloses the brain very rigidly and any growth inside this restricted place can cause severe health issues. The detection of brain tumors requires careful and intricate analysis for surgical planning and treatment. Most physicians employ Magnetic Resonance Imaging (MRI) to diagnose such tumors. A manual diagnosis of the tumors using MRI is known to be time-consuming; approximately, it takes up to eighteen hours per sample. Thus, the automatic segmentation of tumors has become an optimal solution for this problem. Studies have shown that this technique provides better accuracy and it is faster than manual analysis resulting in patients receiving the treatment at the right time. Our research introduces an efficient strategy called Multi-channel MRI embedding to improve the result of deep learning-based tumor segmentation. The experimental analysis on the Brats-2019 dataset wrt the U-Net encoder-decoder (EnDec) model shows significant improvement. The embedding strategy surmounts the state-of-the-art approaches with an improvement of 2% without any timing overheads.

Abstract (translated)

URL

https://arxiv.org/abs/2009.06115

PDF

https://arxiv.org/pdf/2009.06115.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot